Papers/Machine learning

Various calculations for Convolutions

tomato13 2019. 4. 30. 12:05

https://www.slideshare.net/ssuser06e0c5/convolution-77257148


1. Common convolution

input feature map : F x F x N(number of channels)

output feature map : F x F x M(number of channels)

=> 

requirement: 

numbers of kernel parameters : K x K x N x M(number of kernels)

total calculations : F x F x N x K x K x M


2. Pointwise convolution

input feature map : F x F x N(number of channels)

output feature map : F x F x M(number of channels)

=>

requirement: 

number of kernel parameters : 1 x 1 x N x M

total calculations: F x F x 1 x 1 x N x M


3. Depthwise convolution

input feature map : F x F x N(number of channels)

output feature map : F x F x N(number of channels)

=>

requirement: 

number of kernel parameters : K x K x N

total calculations: F x F x N x K x K

'Papers > Machine learning' 카테고리의 다른 글

Loss function for faster rcnn, ssd , yolo  (0) 2019.05.14
Box regression and object classification in RPN  (0) 2019.05.13
Anchor size for yolo  (0) 2019.04.27
Loss function for yolo  (0) 2019.04.27
Faster RCNN vs. SSD  (0) 2019.04.27