Papers/Machine learning
Various calculations for Convolutions
tomato13
2019. 4. 30. 12:05
https://www.slideshare.net/ssuser06e0c5/convolution-77257148
1. Common convolution
input feature map : F x F x N(number of channels)
output feature map : F x F x M(number of channels)
=>
requirement:
numbers of kernel parameters : K x K x N x M(number of kernels)
total calculations : F x F x N x K x K x M
2. Pointwise convolution
input feature map : F x F x N(number of channels)
output feature map : F x F x M(number of channels)
=>
requirement:
number of kernel parameters : 1 x 1 x N x M
total calculations: F x F x 1 x 1 x N x M
3. Depthwise convolution
input feature map : F x F x N(number of channels)
output feature map : F x F x N(number of channels)
=>
requirement:
number of kernel parameters : K x K x N
total calculations: F x F x N x K x K